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ONCE WE KNOW THAT A POLYNOMIAL MAPPING
IS RECTIFIABLE, WE CAN ALGORITHMICALLY FIND

A RECTIFICATION

It is known that some polynomial mappings ϕ : Ck → Cn are recti-
fiable in the sense that there exists a polynomial mapping α : Cn → Cn

whose inverse is also polynomial and for which α(ϕ(z1, . . . , zk)) =
(z1, . . . , zk, 0, . . . , 0) for all z1, . . . , zk. In many cases, the existence of
such a rectification is proven indirectly, without an explicit construc-
tion of the mapping α.

In this report, we use Tarski–Seidenberg algorithm (for deciding the
first order theory of real numbers) to design an algorithm that, given
a polynomial mapping ϕ : Ck → Cn which is known to be rectifiable,
returns a polynomial mapping α : Cn → Cn that rectifies ϕ.

The above general algorithm is not practical for large n, since its
computation time grows faster than 22

n

. To make computations more
practically useful, for several important case, we have also designed a
much faster alternative algorithm.
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