Математическое и компьютерное моделирование: материалы III Международной научной конференции (Омск, 12 ноября 2015 г.). Омск, 2015. С. 136.

UDC 510.5

J. Urenda¹, D. Finston², V. Kreinovich¹

¹University of Texas at El Paso, El Paso, USA ²New Mexico State University, Las Cruces, USA

ONCE WE KNOW THAT A POLYNOMIAL MAPPING IS RECTIFIABLE, WE CAN ALGORITHMICALLY FIND A RECTIFICATION

It is known that some polynomial mappings $\varphi : \mathbb{C}^k \to \mathbb{C}^n$ are rectifiable in the sense that there exists a polynomial mapping $\alpha : \mathbb{C}^n \to \mathbb{C}^n$ whose inverse is also polynomial and for which $\alpha(\varphi(z_1,\ldots,z_k)) = (z_1,\ldots,z_k,0,\ldots,0)$ for all z_1,\ldots,z_k . In many cases, the existence of such a rectification is proven indirectly, without an explicit construction of the mapping α .

In this report, we use Tarski–Seidenberg algorithm (for deciding the first order theory of real numbers) to design an algorithm that, given a polynomial mapping $\varphi : \mathbb{C}^k \to \mathbb{C}^n$ which is known to be rectifiable, returns a polynomial mapping $\alpha : \mathbb{C}^n \to \mathbb{C}^n$ that rectifies φ .

The above general algorithm is not practical for large n, since its computation time grows faster than 2^{2^n} . To make computations more practically useful, for several important case, we have also designed a much faster alternative algorithm.

[©] Urenda J., Finston D., Kreinovich V., 2015